博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Maximum Product Subarray
阅读量:5205 次
发布时间:2019-06-14

本文共 2350 字,大约阅读时间需要 7 分钟。

The maximum product of sub-arrays in $[1, n]$ can be divided by 3 cases:

  1. A[n] is the maximum product of all sub-arrays in [1, n].
  2. The array which has the maximum product is end by A[n].
  3. The array of maximum product is not including A[n]. 

Thus the result can be expressed as

result = max(case1, case2, case3)

The second situation is not normal. If A[n] is positive, it can be got by prePositiveMax[n-1], if A[n] is negative, it can be got by preNegativeMin[n-1].

 

So one brute method is: 

prePositiveMax[n] = max(prePositiveMax[n-1]*A[n], preNegativeMin[n-1]*A[n], A[n]); preNegativeMin[n] = min(prePositiveMax[n-1]*A[n], preNegativeMin[n-1]*A[n], A[n]);

 

A more accurate method is:  

We define pEnd[i]: the maximum non-negative product of subarray with A[i]

We define nEnd[i]: the minimum non-positive product of subarray with A[i]

 

In fact, here we use pEnd, nEnd intead of prePositiveMax, preNegativeMin, thus we have  

if(A[i] > 0){         pEnd[i] = max(A[i], pEnd[i-1]*A[i]);         nEnd[i] = nEnd[i] * A[i]; }else{         pEnd[i] = nEnd[i] * A[i];         nEnd[i] = min(A[i], pEnd[i]*A[i]); }

 

Then, we can simplify as  

if(A[i] < 0) swap(pEnd, nEnd);pEnd = max(pEnd*A[i], A[i]); nEnd = min(nEnd*A[i], A[i]);

 

So we conclude the whole code 

int maxProduct(int A[], int n) {    if(1 == n) return A[0];        int pEnd, nEnd, res;        pEnd = nEnd = res = 0;        for(int i = 0; i < n; ++i){        if(A[i] < 0) swap(&pEnd, &nEnd);                pEnd = max(pEnd*A[i], A[i]);        nEnd = min(nEnd*A[i], A[i]);                if(res < pEnd) res = pEnd; //from res = max(res, pEnd)    }        return res;}

 


 

The complete code is:

class Solution {private:    int max(int a, int b){        return a > b ? a : b;    }    int min(int a, int b){        return a > b ? b : a;    }    void swap(int* a, int* b){        *a = *a + *b;        *b = *a - *b;        *a = *a - *b;    }    public:    int maxProduct(int A[], int n) {        if(1 == n) return A[0];                int pEnd, nEnd, res;                pEnd = nEnd = res = 0;                for(int i = 0; i < n; ++i){            if(A[i] < 0) swap(&pEnd, &nEnd);                        pEnd = max(pEnd*A[i], A[i]);            nEnd = min(nEnd*A[i], A[i]);                        if(res < pEnd) res = pEnd;        }                return res;            }};

 

转载于:https://www.cnblogs.com/kid551/p/4113020.html

你可能感兴趣的文章
关于sql for xml path 的用法
查看>>
向服务器发送josn字符串,服务器端解析
查看>>
win10如何修改host文件
查看>>
spring security 学习(一)spring boot 中开启spring security
查看>>
Leetcode 100: Same Tree
查看>>
<metro>读取目录名
查看>>
Android Monkey 压力测试 介绍
查看>>
使用两个 Windows 窗体 DataGridView 控件创建一个主/从窗体
查看>>
eclipse老是报ThreadPoolExecutor$Worker.run()(转)
查看>>
[NOI2005 维护序列]
查看>>
easyui源码翻译1.32--ComboGrid(数据表格下拉框)
查看>>
LeetCode 274. H-Index
查看>>
LeetCode 112. Path Sum
查看>>
Json,Gson,Ajax基础知识
查看>>
c#Task类。实现异步的一种方式
查看>>
【待阅】待整理文章列表
查看>>
使用 after 伪类清除浮动
查看>>
自定义模板语言之simple_tag和自定义过滤器
查看>>
oracle数据库
查看>>
(4)模型和数据
查看>>